Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666771

RESUMEN

Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.


Asunto(s)
Microscopía por Crioelectrón , Guanosina Trifosfato , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/metabolismo , Anticuerpos de Dominio Único/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación Proteica , Regulación Alostérica , Modelos Moleculares , Multimerización de Proteína , Humanos
2.
ACS Chem Neurosci ; 14(11): 1971-1980, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37200505

RESUMEN

Missense mutations along the leucine-rich repeat kinase 2 (LRRK2) protein are a major contributor to Parkinson's Disease (PD), the second most commonly occurring neurodegenerative disorder worldwide. We recently reported the development of allosteric constrained peptide inhibitors that target and downregulate LRRK2 activity through disruption of LRRK2 dimerization. In this study, we designed doubly constrained peptides with the objective of inhibiting C-terminal of Roc (COR)-COR mediated dimerization at the LRRK2 dimer interface. We show that the doubly constrained peptides are cell-permeant, bind wild-type and pathogenic LRRK2, inhibit LRRK2 dimerization and kinase activity, and inhibit LRRK2-mediated neuronal apoptosis, and in contrast to ATP-competitive LRRK2 kinase inhibitors, they do not induce the mislocalization of LRRK2 to skein-like structures in cells. This work highlights the significance of COR-mediated dimerization in LRRK2 activity while also highlighting the use of doubly constrained peptides to stabilize discrete secondary structural folds within a peptide sequence.


Asunto(s)
Péptidos , Proteínas Serina-Treonina Quinasas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Dimerización , Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Péptidos/farmacología , Péptidos/metabolismo , Mutación
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217606

RESUMEN

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) are a leading cause of the inherited form of Parkinson's disease (PD), while LRRK2 overactivation is also associated with the more common idiopathic form of PD. LRRK2 is a large multidomain protein, including a GTPase as well as a Ser/Thr protein kinase domain. Common, disease-causing mutations increase LRRK2 kinase activity, presenting LRRK2 as an attractive target for drug discovery. Currently, drug development has mainly focused on ATP-competitive kinase inhibitors. Here, we report the identification and characterization of a variety of nanobodies that bind to different LRRK2 domains and inhibit or activate LRRK2 in cells and in in vitro. Importantly, nanobodies were identified that inhibit LRRK2 kinase activity while binding to a site that is topographically distinct from the active site and thus act through an allosteric inhibitory mechanism that does not involve binding to the ATP pocket or even to the kinase domain. Moreover, while certain nanobodies completely inhibit the LRRK2 kinase activity, we also identified nanobodies that specifically inhibit the phosphorylation of Rab protein substrates. Finally, in contrast to current type I kinase inhibitors, the studied kinase-inhibitory nanobodies did not induce LRRK2 microtubule association. These comprehensively characterized nanobodies represent versatile tools to study the LRRK2 function and mechanism and can pave the way toward novel diagnostic and therapeutic strategies for PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/metabolismo , Anticuerpos de Dominio Único , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Animales , Sitios de Unión , Mapeo Epitopo , Células HEK293 , Humanos , Ratones , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Células RAW 264.7 , Proteínas de Unión al GTP rab/metabolismo
4.
Elife ; 82019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31718772

RESUMEN

Intracellular trafficking depends on the function of Rab GTPases, whose activation is regulated by guanine exchange factors (GEFs). The Rab5 GEF, Rabex5, was previously proposed to be auto-inhibited by its C-terminus. Here, we studied full-length Rabex5 and Rabaptin5 proteins as well as domain deletion Rabex5 mutants using hydrogen deuterium exchange mass spectrometry. We generated a structural model of Rabex5, using chemical cross-linking mass spectrometry and integrative modeling techniques. By correlating structural changes with nucleotide exchange activity for each construct, we uncovered new auto-regulatory roles for the ubiquitin binding domains and the Linker connecting those domains to the catalytic core of Rabex5. We further provide evidence that enhanced dynamics in the catalytic core are linked to catalysis. Our results suggest a more complex auto-regulation mechanism than previously thought and imply that ubiquitin binding serves not only to position Rabex5 but to also control its Rab5 GEF activity through allosteric structural alterations.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Ubiquitina/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Dominio Catalítico , Línea Celular , Humanos , Unión Proteica , Transporte de Proteínas
5.
Biol Chem ; 399(12): 1447-1456, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30067506

RESUMEN

Roco proteins have come into focus after mutations in the gene coding for the human Roco protein Leucine-rich repeat kinase 2 (LRRK2) were discovered to be one of the most common genetic causes of late onset Parkinson's disease. Roco proteins are characterized by a Roc domain responsible for GTP binding and hydrolysis, followed by a COR dimerization device. The regulation and function of this RocCOR domain tandem is still not completely understood. To fully biochemically characterize Roco proteins, we performed a systematic survey of the kinetic properties of several Roco protein family members, including LRRK2. Together, our results show that Roco proteins have a unique G-protein cycle. Our results confirm that Roco proteins have a low nucleotide affinity in the micromolar range and thus do not strictly depend on G-nucleotide exchange factors. Measurement of multiple and single turnover reactions shows that neither Pi nor GDP release are rate-limiting, while this is the case for the GAP-mediated GTPase reaction of some small G-proteins like Ras and for most other high affinity Ras-like proteins, respectively. The KM values of the reactions are in the range of the physiological GTP concentration, suggesting that LRRK2 functioning might be regulated by the cellular GTP level.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación
6.
Nat Commun ; 8(1): 1008, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044096

RESUMEN

Mutations in LRRK2 are a common cause of genetic Parkinson's disease (PD). LRRK2 is a multi-domain Roco protein, harbouring kinase and GTPase activity. In analogy with a bacterial homologue, LRRK2 was proposed to act as a GTPase activated by dimerization (GAD), while recent reports suggest LRRK2 to exist under a monomeric and dimeric form in vivo. It is however unknown how LRRK2 oligomerization is regulated. Here, we show that oligomerization of a homologous bacterial Roco protein depends on the nucleotide load. The protein is mainly dimeric in the nucleotide-free and GDP-bound states, while it forms monomers upon GTP binding, leading to a monomer-dimer cycle during GTP hydrolysis. An analogue of a PD-associated mutation stabilizes the dimer and decreases the GTPase activity. This work thus provides insights into the conformational cycle of Roco proteins and suggests a link between oligomerization and disease-associated mutations in LRRK2.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Chlorobium/enzimología , Guanosina Trifosfato/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Enfermedad de Parkinson/enzimología , Proteínas Bacterianas/genética , Chlorobium/química , Chlorobium/genética , Dimerización , Humanos , Hidrólisis , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación , Enfermedad de Parkinson/genética , Fosforilación , Estructura Terciaria de Proteína
7.
Brain ; 140(5): 1280-1299, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334907

RESUMEN

Ataxin-3, the disease protein in Machado-Joseph disease, is known to be proteolytically modified by various enzymes including two major families of proteases, caspases and calpains. This processing results in the generation of toxic fragments of the polyglutamine-expanded protein. Although various approaches were undertaken to identify cleavage sites within ataxin-3 and to evaluate the impact of fragments on the molecular pathogenesis of Machado-Joseph disease, calpain-mediated cleavage of the disease protein and the localization of cleavage sites remained unclear. Here, we report on the first precise localization of calpain cleavage sites in ataxin-3 and on the characterization of the resulting breakdown products. After confirming the occurrence of calpain-derived fragmentation of ataxin-3 in patient-derived cell lines and post-mortem brain tissue, we combined in silico prediction tools, western blot analysis, mass spectrometry, and peptide overlay assays to identify calpain cleavage sites. We found that ataxin-3 is primarily cleaved at two sites, namely at amino acid positions D208 and S256 and mutating amino acids at both cleavage sites to tryptophan nearly abolished ataxin-3 fragmentation. Furthermore, analysis of calpain cleavage-derived fragments showed distinct aggregation propensities and toxicities of C-terminal polyglutamine-containing breakdown products. Our data elucidate the important role of ataxin-3 proteolysis in the pathogenesis of Machado-Joseph disease and further emphasize the relevance of targeting this disease pathway as a treatment strategy in neurodegenerative disorders.


Asunto(s)
Ataxina-3/metabolismo , Calpaína/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Técnicas Químicas Combinatorias , Simulación por Computador , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Péptido Hidrolasas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Transfección
8.
Biochem Soc Trans ; 44(6): 1635-1641, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913672

RESUMEN

Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of Mendelian forms of Parkinson's disease, among autosomal dominant cases. Its gene product, LRRK2, is a large multidomain protein that belongs to the Roco protein family exhibiting GTPase and kinase activity, with the latter activity increased by pathogenic mutations. To allow rational drug design against LRRK2 and to understand the cross-regulation of the G- and the kinase domain at a molecular level, it is key to solve the three-dimensional structure of the protein. We review here our recent successful approach to build the first structural model of dimeric LRRK2 by an integrative modeling approach.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Enfermedad de Parkinson/enzimología , Multimerización de Proteína , Estructura Terciaria de Proteína , Sitios de Unión/genética , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Modelos Moleculares , Mutación , Enfermedad de Parkinson/genética , Fosforilación
9.
Proc Natl Acad Sci U S A ; 113(30): E4357-66, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27357661

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson's disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity-together with the LRR domain-to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Homología de Secuencia de Aminoácido
10.
J Med Chem ; 58(2): 1012-8, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25427005

RESUMEN

Allosteric peptide inhibitors of thymidylate synthase (hTS) bind to the dimer interface and stabilize the inactive form of the protein. Four interface residues were mutated to alanine, and interaction studies were employed to decode the key role of these residues in the peptide molecular recognition. This led to the identification of three crucial interface residues F59, L198, and Y202 that impart activity to the peptide inhibitors and suggest the binding area for further inhibitor design.


Asunto(s)
Antineoplásicos/síntesis química , Inhibidores Enzimáticos/síntesis química , Timidilato Sintasa/antagonistas & inhibidores , Alanina , Regulación Alostérica , Antineoplásicos/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Humanos , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad , Timidilato Sintasa/química , Timidilato Sintasa/genética
11.
J Med Chem ; 55(22): 10272-6, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23075414

RESUMEN

Human thymidylate synthase (hTS) was targeted through a virtual screening approach. The most optimal inhibitor identified, 2-{4-hydroxy-2-[(2-hydroxybenzylidene)hydrazono]-2,5-dihydrothiazol-5-yl}-N-(3-trifluoromethylphenyl)acetamide (5), showed a mixed-type inhibition pattern, with a K(i) of 1.3 µM and activity against ovarian cancer cell lines with the same potency as cisplatin. X-ray studies revealed that it binds the inactive enzyme conformation. This study is the first example of a nonpeptidic inhibitor that binds the inactive hTS and exhibits anticancer activity against ovarian cancer cells.


Asunto(s)
Acetanilidas/farmacología , Ensayos Analíticos de Alto Rendimiento , Neoplasias Ováricas/tratamiento farmacológico , Tiazoles/química , Timidilato Sintasa/antagonistas & inhibidores , Acetanilidas/síntesis química , Antineoplásicos/farmacología , Cisplatino/farmacología , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Modelos Moleculares , Estructura Molecular , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/farmacología , Timidilato Sintasa/metabolismo , Células Tumorales Cultivadas
12.
Amino Acids ; 42(2-3): 641-53, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21814787

RESUMEN

Acquired resistance to cisplatin (cDDP) is a multifactorial process that represents one of the main problems in ovarian cancer therapy. Distamycin A is a minor groove DNA binder whose toxicity has limited its use and prompted the synthesis of derivatives such as NAX001 and NAX002, which have a carbamoyl moiety and different numbers of pyrrolamidine groups. Their interaction with a B-DNA model and with an extended-TATA box model, [Polyd(AT)], was investigated using isothermal titration calorimetry (ITC) to better understand their mechanism of interaction with DNA and therefore better explain their cellular effects. Distamycin A interactions with Dickerson and Poly[d(AT)(6)] oligonucleotides show a different thermodynamic with respect to NAX002. The bulkier distamycin A analogue shows a non optimal binding to DNA due to its additional pyrrolamidine group. Cellular assays performed on cDDP-sensitive and -resistant cells showed that these compounds, distamycin A in particular, affect the expression of folate cycle enzymes even at cellular level. The optimal interaction of distamycin A with DNA may account for the down-regulation of both dihydrofolate reductase (DHFR) and thymidylate synthase (TS) and the up-regulation of spermidine/spermine N1-acetyltransferase (SSAT) caused by this compound. These effects seem differently modulated by the cDDP-resistance phenotype. NAX002 which presents a lower affinity to DNA and slightly affected these enzymes, showed a synergic inhibition profile in combination with cDDP. In addition, their combination with cDDP or polyamine analogues increased cell sensitivity to the drugs suggesting that these interactions may have potential for development in the treatment of ovarian carcinoma.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Distamicinas/farmacología , Neoplasias Ováricas/patología , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Proc Natl Acad Sci U S A ; 108(34): E542-9, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21795601

RESUMEN

Human thymidylate synthase is a homodimeric enzyme that plays a key role in DNA synthesis and is a target for several clinically important anticancer drugs that bind to its active site. We have designed peptides to specifically target its dimer interface. Here we show through X-ray diffraction, spectroscopic, kinetic, and calorimetric evidence that the peptides do indeed bind at the interface of the dimeric protein and stabilize its di-inactive form. The "LR" peptide binds at a previously unknown binding site and shows a previously undescribed mechanism for the allosteric inhibition of a homodimeric enzyme. It inhibits the intracellular enzyme in ovarian cancer cells and reduces cellular growth at low micromolar concentrations in both cisplatin-sensitive and -resistant cells without causing protein overexpression. This peptide demonstrates the potential of allosteric inhibition of hTS for overcoming platinum drug resistance in ovarian cancer.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Terapia Molecular Dirigida , Neoplasias Ováricas/enzimología , Péptidos/metabolismo , Péptidos/farmacología , Timidilato Sintasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Femenino , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Péptidos/química , Péptidos/uso terapéutico , Unión Proteica/efectos de los fármacos , Conformación Proteica , Multimerización de Proteína/efectos de los fármacos , Termodinámica , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo
14.
Bioorg Med Chem ; 18(22): 7773-85, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20951595

RESUMEN

In the process of drug discovery the lead-identification phase may be critical due to the likely poor safety profile of the candidates, causing the delay or even the abandonment of a certain project. Nowadays, combining molecular modeling and in vivo cellular evaluation can help to identify compounds with an enhanced safety profile. Previously, two quinoxalines have been identified as inhibitors of the folate-dependent proteins belonging to the thymidylate synthase cycle. Unfortunately, cytotoxic activity against a panel of cisplatin(cDDP)-sensitive ovarian carcinoma cell lines and their resistant counterparts was coupled with toxicity to non-tumorigenic Vero cells. Here we describe the application of a ligand-based virtual screening, and several [1,2,4]triazolo[4,3-a]quinoxalines were optimized to improve their ADME-tox profile. The resulting 4-(trifluoromethyl)-1-p-tolyl-[1,2,4]triazolo[4,3-a]quinoxaline (24), which interferes intracellularly with DHFR and TS reducing the protein levels like 5-FU, but without inducing TS ternary complex formation, was 2-times less toxic in vitro than cisplatin and 5-FU.


Asunto(s)
Antagonistas del Ácido Fólico/química , Ácido Fólico/metabolismo , Ligandos , Quinoxalinas/química , Triazoles/química , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/toxicidad , Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacocinética , Antagonistas del Ácido Fólico/toxicidad , Humanos , Quinoxalinas/farmacocinética , Quinoxalinas/toxicidad , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidilato Sintasa/antagonistas & inhibidores , Timidilato Sintasa/metabolismo , Triazoles/farmacocinética , Triazoles/toxicidad
15.
Protein Sci ; 19(5): 1023-30, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20306493

RESUMEN

An ad hoc bioconjugation/fluorescence resonance energy transfer (FRET) assay has been designed to spectroscopically monitor the quaternary state of human thymidylate synthase dimeric protein. The approach enables the chemoselective engineering of allosteric residues while preserving the native protein functions through reversible masking of residues within the catalytic site, and is therefore suitable for activity/oligomerization dual assay screenings. It is applied to tag the two subunits of human thymidylate synthase at cysteines 43 and 43' with an excitation energy donor/acceptor pair. The dimer-monomer equilibrium of the enzyme is then characterized through steady-state fluorescence determination of the intersubunit resonance energy transfer efficiency.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Timidilato Sintasa/química , Timidilato Sintasa/metabolismo , Sitio Alostérico , Dominio Catalítico , Humanos , Cinética , Modelos Moleculares , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...